色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術文章
文章詳情頁

python 利用panda 實現列聯表(交叉表)

瀏覽:102日期:2022-06-28 10:38:54

交叉表(cross-tabulation,簡稱crosstab)是⼀種⽤于計算分組頻率的特殊透視表。

語法詳解:

pd.crosstab(index, # 分組依據 columns, # 列 values=None, # 聚合計算的值 rownames=None, # 列名稱 colnames=None, # 行名稱 aggfunc=None, # 聚合函數 margins=False, # 總計行/列 dropna=True, # 是否刪除缺失值 normalize=False # )1 crosstab() 實例11.1 讀取數據

import osimport numpy as npimport pandas as pdfile_name = os.path.join(path, ’Excel_test.xls’)df = pd.read_excel(io=file_name, # 工作簿路徑 sheetname=’透視表’, # 工作表名稱 skiprows=1, # 要忽略的行數 parse_cols=’A:D’ # 讀入的列 )df

python 利用panda 實現列聯表(交叉表)

1.2 pd.crosstab() 默認生成以行和列分類的頻數表

pd.crosstab(df[’客戶名稱’], df[’產品類別’])

python 利用panda 實現列聯表(交叉表)

1.3 設置跟多參數實現分類匯總

pd.crosstab(index=df[’客戶名稱’], columns=df[’產品類別’], values=df[’銷量’], aggfunc=’sum’, margins=True ).round(0).fillna(0).astype(’int’)

python 利用panda 實現列聯表(交叉表)

注:因為交叉表示透視表的特例,所以交叉表可以用透視表的函數實現。又因為透視表可以用更 python 的方式 groupby-apply 實現,所以,交叉表完全可以用 groupby-apply 的方式實現。

2 用分類匯總的方法實現 交叉表

df.groupby([’客戶名稱’, ’產品類別’]).apply(sum)

python 利用panda 實現列聯表(交叉表)

2.1 分類匯總、重新索引、設置數值格式綜合應用

c_tbl = df.groupby([’客戶名稱’, ’產品類別’]).apply(sum)[’銷量’].unstack()c_tbl[’總計’] = c_tbl.sum(axis=1) # 添加總計列c_tbl.fillna(0).round(0).astype(’int’)

python 利用panda 實現列聯表(交叉表)

軟件信息:

python 利用panda 實現列聯表(交叉表)

補充:使用python(pandas)將數據處理成交叉分組表

交叉分組表是匯總兩種變量數據的方法, 在很多場景可以用到, 本文會介紹如何使用pandas將包含兩個變量的數據集處理成交叉分組表.

環境

pandas

python 2.7

原理

用坐標軸來進行比喻, 其中一個變量作為x軸, 另一個作為y軸, 如果定位到數據則累加一, 將所有數據遍歷一遍, 最后的坐標軸就是一張交叉分組表(使用坐標軸展示的數據一般是連續的, 交叉分組表的數據是離散的).

具體實現

示例數據:

quality price0 bad 181 bad 172 great 523 good 284 excellent 885 great 636 bad 87 good 228 good 689 excellent 9810 great 5311 bad 1312 great 6213 good 4814 excellent 7815 great 6316 good 3717 great 6918 good 2819 excellent 8120 great 4321 good 3222 great 6223 good 2824 excellent 8225 great 53

代碼:

import pandas as pd from pandas import DataFrame, Series #生成數據 df = DataFrame([[’bad’, 18], [’bad’, 17], [’great’, 52], [’good’, 28], [’excellent’, 88], [’great’, 63], [’bad’, 8], [’good’, 22], [’good’, 68], [’excellent’, 98], [’great’, 53], [’bad’, 13], [’great’, 62], [’good’, 48], [’excellent’, 78], [’great’, 63], [’good’, 37], [’great’, 69], [’good’, 28], [’excellent’, 81], [’great’, 43], [’good’, 32], [’great’, 62], [’good’, 28], [’excellent’, 82], [’great’, 53]], columns = [’quality’, ’price’])#廣播使用的函數def quality_cut(data): s = Series(pd.cut(data[’price’], np.arange(0, 100, 10))) return pd.groupby(s, s).count()#進行分組處理df.groupby(df[’quality’]).apply(quality_cut)

結果:

python 利用panda 實現列聯表(交叉表)

交叉分組

詳細分析

從邏輯上來看, 為了達到對示例數據的交叉分組, 需要完成以下工作:

將數據以quality列進行分組.

將每個分組的數據分別進行cut, 以10為間隔.

將cut過的數據, 以cut的范圍為列進行分組

將所有數據組合到一起, row為quality, columns為cut的范圍

步驟1, pandasgroupby(...)接口, 會按照指定的列進行分組處理, 每一個分組, 存儲相同類別的數據

<class ’pandas.core.frame.DataFrame’> quality price0 bad 181 bad 176 bad 811 bad 13

而我們需要的, 只是price這列的數據, 所以單獨將這列拿出來, 進行cut, 最后得到我們要的series(步驟2, 步驟3)

price(0, 10] 1(10, 20] 3(20, 30] 0(30, 40] 0(40, 50] 0(50, 60] 0(60, 70] 0(70, 80] 0(80, 90] 0

使用pandas

apply()的廣播特性, 每一個分組的數據都會經過上述幾個步驟的處理, 最后與第一次分組row進行組合.

后記

估計能力有限, 這個問題想了很長時間, 沒想到pandas這么可以這么方便達成交叉分組的效果. 思考的時候主要是卡在數據組合上, 當數據量很大時通過多個步驟進行數據組合, 肯定是低效而且錯誤的. 最后仔細研究了groupby, dataframe, series, dataframeIndex等數據模型, 使用廣播特性用幾句代碼就完成了. 證明了pandas的高性能, 也提醒自己遇見問題一定要耐心分析。

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持好吧啦網。如有錯誤或未考慮完全的地方,望不吝賜教。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 欧美一级毛片免费大片 | 国产精品久久成人影院 | 国产精品99久久久久久www | 国产做a爰片久久毛片 | 欧美视频一区二区在线观看 | 久久伊人精品热在75 | 99视频在线看观免费 | 一级精品视频 | 国产精品黄在线观看免费 | 欧美日韩精品乱国产 | 亚洲国产成人精彩精品 | 久草资源在线播放 | 另类视频一区 | 日韩一级特黄 | 国产成版人视频网站免费下 | 亚洲欧美小视频 | 成年人免费网站视频 | 国产成人精品一区二区视频 | 国产女王vk | 91九色视频无限观看免费 | 欧美另类交视频 | 手机在线一区二区三区 | 成人免费视频网站 | 搞黄网站在线观看 | 毛片视频在线免费观看 | 精品国产欧美另类一区 | 怡红院自拍 | 成人午夜两性视频免费看 | 亚洲精品国产高清不卡在线 | 日韩一级片免费 | 欧美国产伦久久久久 | 在线永久免费观看黄网站 | 九九精品在线视频 | 欧美一级片 在线播放 | 免费一级欧美毛片 | 欧美亚洲国产成人综合在线 | 国产香蕉国产精品偷在线观看 | 欧美成人免费高清二区三区 | 波多野结衣免费视频观看 | 国产国产人免费人成成免视频 | 亚洲第一成年网 |