色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術文章
文章詳情頁

基于Python pyecharts實現多種圖例代碼解析

瀏覽:6日期:2022-07-14 15:21:39

詞云圖

from pyecharts.charts import WordClouddef word1(): words= [ ('Sam S Club', 10000), ('Macys', 6181), ('Amy Schumer', 4386), ('Jurassic World', 4055), ('Charter Communications', 2467), ('Chick Fil A', 2244), ('Planet Fitness', 1868), ('Pitch Perfect', 1484), ('Express', 1112), ('Home', 865), ('Johnny Depp', 847), ('Lena Dunham', 582), ('Lewis Hamilton', 555), ('KXAN', 550), ('Mary Ellen Mark', 462), ('Farrah Abraham', 366), ('Rita Ora', 360), ('Serena Williams', 282), ('NCAA baseball tournament', 273), ('Point Break', 265), ] worldcloud = ( WordCloud() .add('', words, word_size_range=[20, 100]) .set_global_opts(title_opts=opt.TitleOpts(title='WorldCloud-shape-diamond')) ) # worldcloud = ( # WordCloud() # .add('', words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) # .set_global_opts(title_opts=opt.TitleOpts(title='WorldCloud-shape-diamond')) # ) worldcloud.render('wordl.html') os.system('wordl.html')

效果如下:

基于Python pyecharts實現多種圖例代碼解析

散點圖

from pyecharts.charts import Scatterimport numpy as npdef sca(): x_data = np.linspace(0, 10, 30) y1_data = np.sin(x_data) y2_data = np.cos(x_data) # 繪制散點圖 # 設置圖表大小 figsise = opt.InitOpts(width='800px', height='600px') scatter = Scatter(init_opts=figsise) # 添加數據 scatter.add_xaxis(xaxis_data=x_data) scatter.add_yaxis(series_name='sin(x)散點圖', #名稱 y_axis=y1_data, # 數據 label_opts=opt.LabelOpts(is_show=False), # 數據不顯示 symbol_size=15, # 設置散點的大小 symbol='triangle' # 設置散點的形狀 ) scatter.add_yaxis(series_name='cos(x)散點圖', y_axis=y2_data, label_opts=opt.LabelOpts(is_show=False)) scatter.render() os.system('render.html')

效果如下:

基于Python pyecharts實現多種圖例代碼解析

餅狀圖

from pyecharts.charts import Piefrom pyecharts import options as optfrom pyecharts.faker import Faker as fadef pie1(): pie = ( Pie() .add('', [list(z) for z in zip(fa.choose(), fa.values())]) .set_global_opts(title_opts=opt.TitleOpts(title='pie-基本示例')) .set_series_opts(label_opts=opt.LabelOpts(formatter='{b}:{c}')) ) pie.render() os.system('render.html')def pie2(): pie = ( Pie() .add('', [list(z) for z in zip(fa.choose(), fa.values())], radius=['40%', '75%']) .set_global_opts(title_opts=opt.TitleOpts(title='pie-示例'), legend_opts=opt.LegendOpts( orient='vertical', pos_top='15%', pos_left='2%' )) .set_series_opts(label_opts=opt.LabelOpts(formatter='{b}:{c}')) ) pie.render() os.system('render.html')def pie3(): pie = ( Pie() .add('', [list(z) for z in zip(fa.choose(), fa.values())], radius=['40%', '75%'], center=['25%', '50%'], rosetype='radius', label_opts=opt.LabelOpts(is_show=False)) .add('', [list(z) for z in zip(fa.choose(), fa.values())], radius=['30%', '75%'], center=['75%', '50%'], rosetype='area') .set_global_opts(title_opts=opt.TitleOpts(title='pie-玫瑰圖示例')) ) pie.render() os.system('render.html')def pie4(): # 多餅圖顯示 pie = ( Pie() .add( '', [list(z) for z in zip(['劇情', '其他'], [25, 75])], center=['20%', '30%'], radius=[40, 60] ) .add( '', [list(z) for z in zip(['奇幻', '其他'], [24, 76])], center=['55%', ’30%’], radius=[40, 60] ) .add( '', [list(z) for z in zip(['愛情', '其他'], [14, 86])], center=['20%', '70%'], radius=[40, 60] ) .add( '', [list(z) for z in zip(['驚駭', '其他'], [1, 89])], center=['55%', '70%'], radius=[40, 60] ) .set_global_opts( title_opts=opt.TitleOpts(title='pie-多餅圖基本示例'), legend_opts=opt.LegendOpts(type_='scroll', pos_top='20%', pos_left='80%', orient='vertical' ) ) .set_series_opts(label_opts=opt.LabelOpts(formatter='{b}:{c}')) ) pie.render() os.system('render.html')

直方圖

from pyecharts.charts import Barfrom pyecharts import options as optfrom pyecharts.globals import ThemeTypefrom pyecharts.faker import Faker as faimport randomdef pye1(): # 生成隨機數據 attr = fa.days_attrs v1 = [random.randrange(10, 150) for _ in range(31)] v2 = [random.randrange(10, 150) for _ in range(31)] # 初始化一個Bar對象,并設定一寫初始化設置 bar = Bar(init_opts=opt.InitOpts(theme=ThemeType.WHITE)) # 添加數據 bar.add_xaxis(attr) # is_selected: 打開圖表時是否默認加載 grap:不同系列的柱間距離,百分比; color:指定柱狀圖Label的顏色 bar.add_yaxis('test1', v1, gap='0', category_gap='20%', color=fa.rand_color()) bar.add_yaxis('test2', v2, is_selected=False, gap='0%', category_gap='20%', color=fa.rand_color()) # 全局配置 # title_opts:圖標標題相關設置 # toolbox_opts: 工具欄相關設置 # yaxis_opts/xaxis_opts: 坐標軸相關設置 # axislabel_opts: 坐標軸簽字相關設置 # axisline_opts: 坐標軸軸線相關設置 # datazoom_opts: 坐標軸軸線相關設置 # markpoint_opts: 標記點相關設置 # markpoint_opts:label_opts=opts.LabelOpts(is_show=False) 標簽值是否疊加 # markline_opts:標記線相關設置 bar.set_global_opts(title_opts=opt.TitleOpts(title='主標題', subtitle='副標題'), toolbox_opts=opt.ToolboxOpts(), yaxis_opts=opt.AxisOpts(axislabel_opts=opt.LabelOpts(formatter='{value}/月'), name='這是y軸'), xaxis_opts=opt.AxisOpts( axisline_opts=opt.AxisLineOpts(linestyle_opts=opt.LineStyleOpts(color=’blue’)), name='這是x軸'), datazoom_opts=opt.DataZoomOpts() ) bar.set_series_opts(markpoint_opts=opt.MarkPointOpts(data=[opt.MarkPointItem(type_='max', name='最大值'),opt.MarkPointItem(type_='min', name='最小值'),opt.MarkPointItem(type_='average', name='平均值')]), markline_opts=opt.MarkLineOpts(data=[opt.MarkLineItem(type_='min', name='最小值'), opt.MarkLineItem(type_='max', name='最大值'), opt.MarkLineItem(type_='average', name='平均值')])) # 指定生成html文件路徑 bar.render(’test.html’) os.system('test.html')

效果如下

基于Python pyecharts實現多種圖例代碼解析

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 手机在线观看亚洲国产精品 | 成人毛片1024你懂的 | 亚洲欧美视频一区二区三区 | 日韩美女毛片 | 国产精品久久久久久小说 | 高清一区二区三区免费 | 50岁老女人毛片一级亚洲 | 国产精品深爱在线 | 亚洲国产成人精品区 | 欧美亚洲不卡 | 寡妇一级a毛片免费播放 | 亚洲免费毛片 | 国产福利精品在线观看 | 男女国产一级毛片 | 亚欧色视频在线观看免费 | 美女福利视频国产 | 精品国产自在现线看久久 | 日韩在线视频不卡一区二区三区 | 美女免费在线视频 | 亚洲美女视频 | 亚洲日韩中文字幕 | 欧美视频在线看 | 亚洲成a人片在线观看中文!!! | 国产成人99久久亚洲综合精品 | 国产美女白丝袜精品_a不卡 | 日本一区二区免费在线观看 | 亚洲一级毛片视频 | 欧美一级久久久久久久大 | 国产日本亚洲欧美 | 国内自拍区 | 成年女人毛片免费播放视频m | 午夜精品网 | 国产91在线精品 | 久久亚洲欧美成人精品 | 欧美一级特黄特黄毛片 | aaa色| 日韩一级 | 欧美一级做一a做片性视频 欧美一级做一级爱a做片性 | 性生活视频网站 | 国产成人精品日本亚洲网址 | 男人使劲躁女人视频小v |