色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術文章
文章詳情頁

Python替換NumPy數組中大于某個值的所有元素實例

瀏覽:6日期:2022-07-22 11:29:58

我有一個2D(二維) NumPy數組,并希望用255.0替換大于或等于閾值T的所有值。據我所知,最基礎的方法是:

shape = arr.shaperesult = np.zeros(shape)for x in range(0, shape[0]): for y in range(0, shape[1]): if arr[x, y] >= T: result[x, y] = 255

有更簡潔和pythonic的方式來做到這一點嗎?

有沒有更快(可能不那么簡潔和/或不那么pythonic)的方式來做到這一點?

這將成為人體頭部MRI掃描窗口/等級調整子程序的一部分,2D numpy數組是圖像像素數據。

Python替換NumPy數組中大于某個值的所有元素實例

最佳解決思路

我認為最快和最簡潔的方法是使用Numpy的內置索引。如果您有名為arr的ndarray,則可以按如下所示將所有元素>255替換為值x:

arr[arr > 255] = x

我用500 x 500的隨機矩陣在我的機器上運行了這個函數,用5替換了所有> 0.5的值,平均耗時7.59ms。

In [1]: import numpy as npIn [2]: A = np.random.rand(500, 500)In [3]: timeit A[A > 0.5] = 5100 loops, best of 3: 7.59 ms per loop

次佳解決思路

因為實際上需要一個不同的數組,arr,其中arr < 255,可以簡單地完成:

result = np.minimum(arr, 255)

更一般地,對于下限和/或上限:

result = np.clip(arr, 0, 255)

如果只是想訪問超過255的值,np.clip和np.minimum(或者np.maximum)對你的情況更好更快。

In [292]: timeit np.minimum(a, 255)100000 loops, best of 3: 19.6 µs per loop In [293]: %%timeit .....: c = np.copy(a) .....: c[a>255] = 255 .....: 10000 loops, best of 3: 86.6 µs per loop

如果要執行in-place(即修改arr而不是創建result),則可以使用np.minimum的out參數:

np.minimum(arr, 255, out=arr)

或者

np.clip(arr, 0, 255, arr)

(out=名稱是可選的,因為參數的順序與函數的定義相同。)

對于in-place修改,布爾索引加速了很多(不必分別修改和拷貝),但仍然不如minimum:

In [328]: %%timeit .....: a = np.random.randint(0, 300, (100,100)) .....: np.minimum(a, 255, a) .....: 100000 loops, best of 3: 303 µs per loop In [329]: %%timeit .....: a = np.random.randint(0, 300, (100,100)) .....: a[a>255] = 255 .....: 100000 loops, best of 3: 356 µs per loop

比較來看,如果你想限制你的最大值和最小值,沒有clip將不得不像下面這樣做兩次

np.minimum(a, 255, a)np.maximum(a, 0, a)

要么,

a[a>255] = 255a[a<0] = 0

第三種解決思路

可以通過使用where功能來達到最快的速度:

例如,在numpy數組中查找大于0.2的項目,并用0代替它們:

import numpy as npnums = np.random.rand(4,3)print np.where(nums > 0.2, 0, nums)

第四種思路

可以考慮使用numpy.putmask:

np.putmask(arr, arr>=T, 255.0)

下面是與Numpy內置索引的性能比較:

In [1]: import numpy as npIn [2]: A = np.random.rand(500, 500) In [3]: timeit np.putmask(A, A>0.5, 5)1000 loops, best of 3: 1.34 ms per loop In [4]: timeit A[A > 0.5] = 51000 loops, best of 3: 1.82 ms per loop

以上這篇Python替換NumPy數組中大于某個值的所有元素實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 欧美一级第一免费高清 | 黄www| 真正国产乱子伦高清对白 | 狠狠色狠狠色综合久久第一次 | 男女扒开双腿猛进入免费网站 | 韩国一级毛片大全女教师 | 伊人久久大香线焦在观看 | 国产一区曰韩二区欧美三区 | 日韩天天干 | 成人久久久久久 | 国产日韩在线播放 | 亚州色吧| 国产一级影片 | 一级片视频免费观看 | 三级午夜三级三点在看 | 色噜噜国产精品视频一区二区 | 成人18在线视频播放 | 免费一级毛片麻豆精品 | 日本xxxb孕交| 久久黄色精品视频 | 男人天堂1024| 国产美女又黄又爽又色视频免费 | 99福利网 | 亚洲精品久久九九精品 | 日韩在线观看视频网站 | 成人午夜免费观看 | 91原创在线 | 免费福利在线看黄网站 | 18年大片免费在线 | 99九九99九九九视频精品 | 在线免费黄色网址 | 久久久久久久99精品免费观看 | 一个人看的日本免费视频 | 亚洲 欧美 丝袜 | 日韩制服诱惑 | 成人免费看www网址入口 | 国产午夜精品理论片 | 亚洲成人在线播放视频 | 欧美成人乱弄视频 | 日韩欧美视频一区二区三区 | 伊人久久青草青青综合 |