python實(shí)點(diǎn)云分割k-means(sklearn)詳解
本文實(shí)例為大家分享了Python實(shí)點(diǎn)云分割k-means(sklearn),供大家參考,具體內(nèi)容如下
植物葉片分割
import numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.cluster import KMeansfrom sklearn.preprocessing import StandardScalerfrom mpl_toolkits.mplot3d import Axes3Ddata = pd.read_csv('jiaaobo1.txt',sep = ' ')data1 = data.iloc[:,0:3]#標(biāo)準(zhǔn)化transfer = StandardScaler()data_new = transfer.fit_transform(data1)data_new#預(yù)估計(jì)流程estimator = KMeans(n_clusters = 10)estimator.fit(data_new)y_pred = estimator.predict(data_new)#也可以不預(yù)測(cè)#cluster = KMeans(n_clusters = 9).fit(data_new)#y_pred = cluster.labels_s#質(zhì)心 #centroid = cluster.cluster_centers_#centroid.shapefig = plt.figure()ax = Axes3D(fig)for i in range(9): ax.scatter3D(data_new[y_pred == i,0],data_new[y_pred == i,1],data_new[y_pred == i,2],marker = '.')ax.view_init(elev = 60,azim = 30)ax.set_zlabel(’Z’)ax.set_ylabel(’Y’)ax.set_xlabel(’X’)plt.show()
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持好吧啦網(wǎng)。
相關(guān)文章:
1. 完美解決vue 中多個(gè)echarts圖表自適應(yīng)的問題2. SpringBoot+TestNG單元測(cè)試的實(shí)現(xiàn)3. vue實(shí)現(xiàn)web在線聊天功能4. idea配置jdk的操作方法5. VMware中如何安裝Ubuntu6. Springboot 全局日期格式化處理的實(shí)現(xiàn)7. python 浮點(diǎn)數(shù)四舍五入需要注意的地方8. Docker容器如何更新打包并上傳到阿里云9. Java GZip 基于內(nèi)存實(shí)現(xiàn)壓縮和解壓的方法10. JAMon(Java Application Monitor)備忘記
