亚洲免费在线视频-亚洲啊v-久久免费精品视频-国产精品va-看片地址-成人在线视频网

您的位置:首頁技術文章
文章詳情頁

Python基于Dlib的人臉識別系統的實現

瀏覽:2日期:2022-08-06 08:52:16

之前已經介紹過人臉識別的基礎概念,以及基于opencv的實現方式,今天,我們使用dlib來提取128維的人臉嵌入,并使用k臨近值方法來實現人臉識別。

人臉識別系統的實現流程與之前是一樣的,只是這里我們借助了dlib和face_recognition這兩個庫來實現。face_recognition是對dlib庫的包裝,使對dlib的使用更方便。所以首先要安裝這2個庫。

pip3 install dlibpip3 install face_recognition

然后,還要安裝imutils庫

pip3 install imutils

我們看一下項目的目錄結構:

.├── dataset│ ├── alan_grant [22 entries exceeds filelimit, not opening dir]│ ├── claire_dearing [53 entries exceeds filelimit, not opening dir]│ ├── ellie_sattler [31 entries exceeds filelimit, not opening dir]│ ├── ian_malcolm [41 entries exceeds filelimit, not opening dir]│ ├── john_hammond [36 entries exceeds filelimit, not opening dir]│ └── owen_grady [35 entries exceeds filelimit, not opening dir]├── examples│ ├── example_01.png│ ├── example_02.png│ └── example_03.png├── output│ ├── lunch_scene_output.avi│ └── webcam_face_recognition_output.avi├── videos│ └── lunch_scene.mp4├── encode_faces.py├── encodings.pickle├── recognize_faces_image.py├── recognize_faces_video_file.py├── recognize_faces_video.py└── search_bing_api.py 10 directories, 12 files

首先,提取128維的人臉嵌入:

命令如下:

python3 encode_faces.py --dataset dataset --encodings encodings.pickle -d hog

記住:如果你的電腦內存不夠大,請使用hog模型進行人臉檢測,如果內存夠大,可以使用cnn神經網絡進行人臉檢測。

看代碼:

# USAGE# python encode_faces.py --dataset dataset --encodings encodings.pickle # import the necessary packagesfrom imutils import pathsimport face_recognitionimport argparseimport pickleimport cv2import os # construct the argument parser and parse the argumentsap = argparse.ArgumentParser()ap.add_argument('-i', '--dataset', required=True,help='path to input directory of faces + images')ap.add_argument('-e', '--encodings', required=True,help='path to serialized db of facial encodings')ap.add_argument('-d', '--detection-method', type=str, default='hog',help='face detection model to use: either `hog` or `cnn`')args = vars(ap.parse_args()) # grab the paths to the input images in our datasetprint('[INFO] quantifying faces...')imagePaths = list(paths.list_images(args['dataset'])) # initialize the list of known encodings and known namesknownEncodings = []knownNames = [] # loop over the image pathsfor (i, imagePath) in enumerate(imagePaths):# extract the person name from the image pathprint('[INFO] processing image {}/{}'.format(i + 1,len(imagePaths)))name = imagePath.split(os.path.sep)[-2] # load the input image and convert it from RGB (OpenCV ordering)# to dlib ordering (RGB)image = cv2.imread(imagePath)rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # detect the (x, y)-coordinates of the bounding boxes# corresponding to each face in the input imageboxes = face_recognition.face_locations(rgb,model=args['detection_method']) # compute the facial embedding for the faceencodings = face_recognition.face_encodings(rgb, boxes) # loop over the encodingsfor encoding in encodings:# add each encoding + name to our set of known names and# encodingsknownEncodings.append(encoding)knownNames.append(name) # dump the facial encodings + names to diskprint('[INFO] serializing encodings...')data = {'encodings': knownEncodings, 'names': knownNames}f = open(args['encodings'], 'wb')f.write(pickle.dumps(data))f.close()

輸出結果是每張圖片輸出一個人臉的128維的向量和對于的名字,并序列化到硬盤,供后續人臉識別使用。

識別圖像中的人臉:

這里使用KNN方法實現最終的人臉識別,而不是使用SVM進行訓練。

命令如下:

python3 recognize_faces_image.py --encodings encodings.pickle --image examples/example_01.png

看代碼:

# USAGE# python recognize_faces_image.py --encodings encodings.pickle --image examples/example_01.png # import the necessary packagesimport face_recognitionimport argparseimport pickleimport cv2 # construct the argument parser and parse the argumentsap = argparse.ArgumentParser()ap.add_argument('-e', '--encodings', required=True,help='path to serialized db of facial encodings')ap.add_argument('-i', '--image', required=True,help='path to input image')ap.add_argument('-d', '--detection-method', type=str, default='cnn',help='face detection model to use: either `hog` or `cnn`')args = vars(ap.parse_args()) # load the known faces and embeddingsprint('[INFO] loading encodings...')data = pickle.loads(open(args['encodings'], 'rb').read()) # load the input image and convert it from BGR to RGBimage = cv2.imread(args['image'])rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # detect the (x, y)-coordinates of the bounding boxes corresponding# to each face in the input image, then compute the facial embeddings# for each faceprint('[INFO] recognizing faces...')boxes = face_recognition.face_locations(rgb,model=args['detection_method'])encodings = face_recognition.face_encodings(rgb, boxes) # initialize the list of names for each face detectednames = [] # loop over the facial embeddingsfor encoding in encodings:# attempt to match each face in the input image to our known# encodingsmatches = face_recognition.compare_faces(data['encodings'],encoding)name = 'Unknown' # check to see if we have found a matchif True in matches:# find the indexes of all matched faces then initialize a# dictionary to count the total number of times each face# was matchedmatchedIdxs = [i for (i, b) in enumerate(matches) if b]counts = {} # loop over the matched indexes and maintain a count for# each recognized face facefor i in matchedIdxs:name = data['names'][i]counts[name] = counts.get(name, 0) + 1 # determine the recognized face with the largest number of# votes (note: in the event of an unlikely tie Python will# select first entry in the dictionary)name = max(counts, key=counts.get)# update the list of namesnames.append(name) # loop over the recognized facesfor ((top, right, bottom, left), name) in zip(boxes, names):# draw the predicted face name on the imagecv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)y = top - 15 if top - 15 > 15 else top + 15cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), 2) # show the output imagecv2.imshow('Image', image)cv2.waitKey(0)

實際效果如下:

Python基于Dlib的人臉識別系統的實現

如果要詳細了解細節,請參考:https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/

到此這篇關于Python基于Dlib的人臉識別系統的實現的文章就介紹到這了,更多相關Python Dlib人臉識別內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 免费老外的毛片清高 | 成年人免费网站视频 | 三级视频网站在线观看 | 成年人免费小视频 | 97视频免费播放观看在线视频 | 免费观看久久 | 国产黄a三级三级看三级 | 国产一区二区三区在线观看精品 | 亚洲一区欧洲一区 | 欧美视频在线观看一区二区 | 欧美一级aⅴ毛片 | 精品视自拍视频在线观看 | 成人午夜视频一区二区国语 | 一级片爱爱 | a毛片免费全部播放毛 | 色日韩| 国产日韩久久久精品影院首页 | 亚洲最大情网站在线观看 | 亚洲艹| 国产在线观看成人免费视频 | 草草影院私人免费入口 | 久久精品青草社区 | 欧美人禽杂交狂配毛片 | 国产在线精品成人一区二区三区 | 手机看片国产免费 | 一级片网站在线观看 | 97香蕉久久夜色精品国产 | 女人张腿让男桶免费视频网站 | 午夜宅男宅女看在线观看 | 久久厕所 | 免费在线看a | 日本一级视频 | 欧美日韩亚洲综合在线一区二区 | 免费a网 | 特级毛片全部免费播放a一级 | 免费人成在线观看播放国产 | 久久亚洲精品中文字幕亚瑟 | 国产乱码精品一区二区三区卡 | 国产视频自拍一区 | 亚洲综合日韩欧美一区二区三 | 日本爽快片100色毛片 |