亚洲免费在线视频-亚洲啊v-久久免费精品视频-国产精品va-看片地址-成人在线视频网

您的位置:首頁技術文章
文章詳情頁

詳解python os.walk()方法的使用

瀏覽:3日期:2022-06-16 13:02:59
python os.walk()方法

os.walk方法是python中幫助我們高效管理文件、目錄的工具,在深度學習中數據整理應用的很頻繁,如數據集的名稱格式化、將數據集的按一定比例劃分訓練集train_set、測試集test_set。

1.導入文件(使用os.walk方法前需要導入以下包)

import osimport random # 后續用來將數據隨機打亂和生成確定隨機種子,保證每次生成的隨機數據一樣便于測試模型精準度

2.os.walk()參數解釋

os.walk(top, topdown=True, οnerrοr=None, followlinks=False)(后兩個參數我幾乎沒用過)參數

--top 我們需要遍歷的文件夾的地址(最好使用絕對地址,相對地址有時會出現未知錯誤)--topdown 該參數為True時,會優先遍歷top目錄,否則優先遍歷top的子目錄(默認值為 True)--onerror 需要一個 callable 對象,當walk需要異常時會調用--followlinks 如果為真,則會遍歷目錄下的快捷方式(linux 下是 symbolic link)實際所指的目錄(默認關閉)

os.walk 的返回值是一個生成器(generator),也就是說我們可以用循環去不遍歷它,來獲得其內容。每次遍歷的對象都是返回的是一個三元組(root,dirs,files)

--root 指的是當前正在遍歷的這個文件夾的本身的地址--dirs 返回的是一個列表list,表中數據是該文件夾中所有的目錄的名稱(但不包括子目錄名稱)--files 返回的也是一個列表list , 表中數據是該文件夾中所有的文件名稱(但不包括子目錄名稱)

3.用于測試文件夾組織結構

詳解python os.walk()方法的使用4.

廢話不說,看測試例子

4.1 os.walk(top, topdown=True)時打印返回的 root,dirs,files,順便測試下topdown為真和假時的遍歷順序的區別。(這里就不展示運行后的結果了,代碼拿走直接就可運行)

# topdown=True(該參數默認為真)def _get_img_info(): #測試時將data_dir 換為自己的目標文件夾即可 data_dir = r’C:UsersfutiangeDesktopZero to Heroexpression_testraw_data’ for root,dirs,files in os.walk(data_dir,topdown=True):print(’root={}’.format(root))print(’dirs={}’.format(dirs))print(’files={}’.format(files))if __name__ == ’__main__’: _get_img_info()# topdown=False(該參數默認為假) def _get_img_info(): data_dir = r’C:UsersfutiangeDesktopZero to Heroexpression_testraw_data’ for root,dirs,files in os.walk(data_dir,topdown=False):print(’root={}’.format(root))print(’dirs={}’.format(dirs))print(’files={}’.format(files))if __name__ == ’__main__’: _get_img_info()

4.2 使用案例

在深度學習中遍歷數據集時,我們可以對數據集劃分,這里按train :test = 9 : 1劃分。

import osimport random # 后續用來將數據隨機打亂和生成確定隨機種子,保證每次生成的隨機數據一樣便于測試模型精準度def _get_img_info(rng_seed,split_n,mode): image_path_list = [] #用來存放圖片的路徑 label_path_list = [] #用來存放圖片對應的標簽 data_dir = r’C:UsersfutiangeDesktopZero to Heroexpression_testraw_data’ for root,dirs,files in os.walk(data_dir):for file in files: path_file = os.path.join(root,file) print(path_file) if path_file.endswith('.jpg'): #判斷該路徑下文件是不是以.jpg結尾#print(os.path.basename(root)) #輸出圖片路徑#print(os.path.basename(root)[0]) #輸出該圖片所在的文件夾的第一個字符,我這里文件夾的第一個字符就是圖片的標簽,測試時可以根據自己的文件夾名稱更改#print(int(os.path.basename(root)[0]))image_path_list.append(path_file) #將圖片路徑加入列表label_path_list.append(os.path.basename(root)[0]) #根據文件夾名稱確定標簽,并加入列表 data_info = [[n,l] for n,l in zip(image_path_list,label_path_list)] #將圖片路徑-標簽 關聯起來 random.seed(rng_seed) # 該方法中傳入參數,確保每次生成的種子都是一樣的 random.shuffle(data_info) #上一行代碼生成的種子是確定的,保證了每次將列表元素打亂后的結果一樣,便于測試模型性能 split_idx = int(len(data_info) * split_n) # data_len * 0.9 # split_n代表數據集劃分的比例 if mode == ’train’:img_set = data_info[:split_idx] elif mode == ’val’:img_set = data_info[split_idx:] else:raise Exception('mode 無法識別,僅支持(train,valid)') return img_set #返回隨機打亂后的數據集,后續在對其進行格式化即可將數據集加載進模型測試if __name__ == ’__main__’: _get_img_info(1,0.9,’train’)

到此這篇關于詳解python os.walk()方法的使用的文章就介紹到這了,更多相關python os.walk()方法內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 99视频精品 | 请看一下欧美一级毛片 | 一二三区在线观看 | 日韩精品久久久免费观看夜色 | 国产亚洲精品一区二区 | 亚洲精品免费观看 | 男人天堂成人 | 国产成人精品久久一区二区小说 | 国产一级毛片午夜福 | 一区二区三区在线观看免费 | 日本经典在线三级视频 | 欧美日韩亚洲国内综合网俺 | 一级色 | 亚洲综合网在线观看首页 | 一级特黄特色的免费大片视频 | 一区自拍| 在线播放免费一级毛片欧美 | 精品欧美高清不卡在线 | 国产成年视频 | 国产日韩久久久久69影院 | 黄 色 成 年人网站 黄 色 免费网 站 成 人 | 亚洲综合免费 | 国产一级不卡毛片 | 亚洲视频 欧美视频 | 12一15女人a毛片 | 欧美毛片网站 | 免费看a级| 午夜爽爽爽男女免费观看hd | 男人的天堂在线观看视频不卡 | 欧美一区二区精品系列在线观看 | 国产三级午夜理伦三级 | 免费国产黄 | 久久久久一 | 三级毛片在线免费观看 | 96精品免费视频大全 | 99久久久国产精品免费播放器 | 九九精品久久久久久噜噜 | 日本妞xxxxxxxxx69| 亚洲男女免费视频 | 欧美一级久久久久久久大 | 久久亚洲精品tv |