亚洲免费在线视频-亚洲啊v-久久免费精品视频-国产精品va-看片地址-成人在线视频网

您的位置:首頁技術文章
文章詳情頁

Python實現K-means聚類算法并可視化生成動圖步驟詳解

瀏覽:52日期:2022-06-20 13:17:17
K-means算法介紹

簡單來說,K-means算法是一種無監督算法,不需要事先對數據集打上標簽,即ground-truth,也可以對數據集進行分類,并且可以指定類別數目 牧師-村民模型

K-means 有一個著名的解釋:牧師—村民模型:

有四個牧師去郊區布道,一開始牧師們隨意選了幾個布道點,并且把這幾個布道點的情況公告給了郊區所有的村民,于是每個村民到離自己家最近的布道點去聽課。聽課之后,大家覺得距離太遠了,于是每個牧師統計了一下自己的課上所有的村民的地址,搬到了所有地址的中心地帶,并且在海報上更新了自己的布道點的位置。牧師每一次移動不可能離所有人都更近,有的人發現A牧師移動以后自己還不如去B牧師處聽課更近,于是每個村民又去了離自己最近的布道點……就這樣,牧師每個禮拜更新自己的位置,村民根據自己的情況選擇布道點,最終穩定了下來。

牧師的目的非常明顯,就是要讓每個來上自己課的村民走的路程最少

算法步驟 指定k個中心點 更新數據點所屬類別:計算每個數據點到這k個點的歐氏距離,距離最小即為這個數據點的類別 更新中心點坐標:對每一個類別的數據點求平均,平均值即為新的中心點位置偽代碼

獲取m個n維的數據隨即選取k個點作為初始中心點while keep_changing:for i in range(m):for j in range(k):計算每個點到center的距離判斷離哪個點更近for center in range(k):更新類別中心點的坐標

用Python實現K-means聚類算法

import numpy as npimport matplotlib.pyplot as pltimport sklearn.datasets as datasetsdef create_data(): X,y = datasets.make_blobs(n_samples=1000,n_features=2,centers=[[1,0],[5,4],[2,3],[10,8],[7,4]]) return X,ydef init_centers(data,k): m, n =data.shape # m 樣本個數,n特征個數 center_ids = np.random.choice(m,k) centers = data[center_ids] return centersdef cal_dist(ptA,ptB): return np.linalg.norm(ptA-ptB)def kmeans_process(data,k): centers = init_centers(data, k) m, n = data.shape keep_changing = True pred_y = np.zeros((m,)) while keep_changing:keep_changing = False# 計算剩余樣本所屬類別for i in range(m): min_distance = np.inf for center in range(k):distance = cal_dist(data[i,:],centers[center,:])if distance<min_distance: # 判斷離哪個更近 min_distance = distance idx = center # 類別換下 if pred_y[i] != idx: # 判斷是否發生了改變keep_changing = True pred_y[i] = idx# 更新類別中心點坐標for center in range(k): cluster_data = data[pred_y==center] centers[center,:] = np.mean(cluster_data, axis=0) # 求相同類別數據點的質心點print(centers) return centers, pred_yif __name__ == ’__main__’: X, y = create_data() centers , pred_y = kmeans_process(data=X, k=5) plt.scatter(X[:,0], X[:,1], s=3, c=pred_y) plt.scatter(centers[:,0], centers[:,1], s=10, c=’k’) plt.show()

效果圖

Python實現K-means聚類算法并可視化生成動圖步驟詳解

到此這篇關于Python實現K-means聚類算法并可視化生成動圖步驟詳解的文章就介紹到這了,更多相關Python可視化K-means聚類算法內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 无毛片| 草久在线播放 | 香蕉成人| 男人和女人的做刺激性视频 | 在线观看人成网站深夜免费 | 韩国毛片在线观看 | 国产一级成人毛片 | 天天se天天cao综合网蜜芽 | 69成人免费视频 | 在线视频久久 | 日本又黄又爽又免费 | 韩国一级淫片视频免费播放 | 日韩美a一级毛片 | 欧美日韩国产片 | 天空在线观看免费完整 | 国产色司机在线视频免费观看 | 欧美一级欧美一级在线播放 | 成人精品一区二区久久久 | 国内偷拍免费视频 | 欧美资源在线观看 | 国产精品成人久久久久久久 | 日本精品久久久久中文字幕 1 | 国产日产亚洲系列首页 | 日韩欧美在线播放视频 | 99精品网站| 欧美做a一级视频免费观看 欧美做爱毛片 | 国产免费影院 | 欧美视频三级 | 久久午夜影视 | 草草影院国产第一页 | 91进入蜜桃臀在线播放 | 欧美成人免费全部观看天天性色 | 国产精品黄在线观看免费 | 国产亚洲精品一区久久 | 日本一区二区免费在线观看 | 亚洲精品日韩在线一区 | 久久成人精品 | 在线天天干 | 碰碰久久 | 成人a在线| 欧美成人xxx |