色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術(shù)文章
文章詳情頁

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

瀏覽:135日期:2022-06-22 14:32:32
一、環(huán)境準備 python3.8.3 pycharm 項目所需第三方包

pip install scrapy fake-useragent requests selenium virtualenv -i https://pypi.douban.com/simple

1.1 創(chuàng)建虛擬環(huán)境

切換到指定目錄創(chuàng)建

virtualenv .venv

創(chuàng)建完記得激活虛擬環(huán)境

1.2 創(chuàng)建項目

scrapy startproject 項目名稱

1.3 使用pycharm打開項目,將創(chuàng)建的虛擬環(huán)境配置到項目中來1.4 創(chuàng)建京東spider

scrapy genspider 爬蟲名稱 url

1.5 修改允許訪問的域名,刪除https:

二、問題分析

爬取數(shù)據(jù)的思路是先獲取首頁的基本信息,在獲取詳情頁商品詳細信息;爬取京東數(shù)據(jù)時,只返回40條數(shù)據(jù),這里,作者使用selenium,在scrapy框架中編寫下載器中間件,返回頁面所有數(shù)據(jù)。爬取的字段分別是:

商品價格

商品評數(shù)

商品店家

商品SKU(京東可直接搜索到對應(yīng)的產(chǎn)品)

商品標題

商品詳細信息

三、spider

import reimport scrapyfrom lianjia.items import jd_detailItemclass JiComputerDetailSpider(scrapy.Spider): name = ’ji_computer_detail’ allowed_domains = [’search.jd.com’, ’item.jd.com’] start_urls = [’https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page=1&s=1&click=0’] def parse(self, response):lls = response.xpath(’//ul[@class='gl-warp clearfix']/li’)for ll in lls: item = jd_detailItem() computer_price = ll.xpath(’.//div[@class='p-price']/strong/i/text()’).extract_first() computer_commit = ll.xpath(’.//div[@class='p-commit']/strong/a/text()’).extract_first() computer_p_shop = ll.xpath(’.//div[@class='p-shop']/span/a/text()’).extract_first() item[’computer_price’] = computer_price item[’computer_commit’] = computer_commit item[’computer_p_shop’] = computer_p_shop meta = {’item’: item } shop_detail_url = ll.xpath(’.//div[@class='p-img']/a/@href’).extract_first() shop_detail_url = ’https:’ + shop_detail_url yield scrapy.Request(url=shop_detail_url, callback=self.detail_parse, meta=meta)for i in range(2, 200, 2): next_page_url = f’https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page={i}&s=116&click=0’ yield scrapy.Request(url=next_page_url, callback=self.parse) def detail_parse(self, response):item = response.meta.get(’item’)computer_sku = response.xpath(’//a[@class='notice J-notify-sale']/@data-sku’).extract_first()item[’computer_sku’] = computer_skucomputer_title = response.xpath(’//div[@class='sku-name']/text()’).extract_first().strip()computer_title = ’’.join(re.findall(’S’, computer_title))item[’computer_title’] = computer_titlecomputer_detail = response.xpath(’string(//ul[@class='parameter2 p-parameter-list'])’).extract_first().strip()computer_detail = ’’.join(re.findall(’S’, computer_detail))item[’computer_detail’] = computer_detailyield item四、item

class jd_detailItem(scrapy.Item): # define the fields for your item here like: computer_sku = scrapy.Field() computer_price = scrapy.Field() computer_title = scrapy.Field() computer_commit = scrapy.Field() computer_p_shop = scrapy.Field() computer_detail = scrapy.Field()五、setting

import randomfrom fake_useragent import UserAgentua = UserAgent()USER_AGENT = ua.randomROBOTSTXT_OBEY = FalseDOWNLOAD_DELAY = random.uniform(0.5, 1)DOWNLOADER_MIDDLEWARES = { ’lianjia.middlewares.jdDownloaderMiddleware’: 543}ITEM_PIPELINES = { ’lianjia.pipelines.jd_csv_Pipeline’: 300}六、pipelines

class jd_csv_Pipeline: # def process_item(self, item, spider): # return item def open_spider(self, spider):self.fp = open(’./jd_computer_message.xlsx’, mode=’w+’, encoding=’utf-8’)self.fp.write(’computer_skutcomputer_titletcomputer_p_shoptcomputer_pricetcomputer_committcomputer_detailn’) def process_item(self, item, spider):# 寫入文件try: line = ’t’.join(list(item.values())) + ’n’ self.fp.write(line) return itemexcept: pass def close_spider(self, spider):# 關(guān)閉文件self.fp.close()七、middlewares

class jdDownloaderMiddleware: def process_request(self, request, spider):# 判斷是否是ji_computer_detail的爬蟲# 判斷是否是首頁if spider.name == ’ji_computer_detail’ and re.findall(f’.*(item.jd.com).*’, request.url) == []: options = ChromeOptions() options.add_argument('--headless') driver = webdriver.Chrome(options=options) driver.get(request.url) for i in range(0, 15000, 5000):driver.execute_script(f’window.scrollTo(0, {i})’)time.sleep(0.5) body = driver.page_source.encode() time.sleep(1) return HtmlResponse(url=request.url, body=body, request=request)return None八、使用jupyter進行簡單的處理和分析

其他文件:百度停用詞庫、簡體字文件下載第三方包

!pip install seaborn jieba wordcloud PIL -i https://pypi.douban.com/simple

8.1導(dǎo)入第三方包

import reimport osimport jiebaimport wordcloudimport pandas as pdimport numpy as npfrom PIL import Imageimport seaborn as snsfrom docx import Documentfrom docx.shared import Inchesimport matplotlib.pyplot as pltfrom pandas import DataFrame,Series

8.2設(shè)置可視化的默認字體和seaborn的樣式

sns.set_style(’darkgrid’)plt.rcParams[’font.sans-serif’] = [’SimHei’]plt.rcParams[’axes.unicode_minus’] = False

8.3讀取數(shù)據(jù)

df_jp = pd.read_excel(’./jd_shop.xlsx’)

8.4篩選Inteli5、i7、i9處理器數(shù)據(jù)

def convert_one(s): if re.findall(f’.*?(i5).*’, str(s)) != []:return re.findall(f’.*?(i5).*’, str(s))[0] elif re.findall(f’.*?(i7).*’, str(s)) != []:return re.findall(f’.*?(i7).*’, str(s))[0] elif re.findall(f’.*?(i9).*’, str(s)) != []:return re.findall(f’.*?(i9).*’, str(s))[0]df_jp[’computer_intel’] = df_jp[’computer_detail’].map(convert_one)

8.5篩選筆記本電腦的屏幕尺寸范圍

def convert_two(s): if re.findall(f’.*?(d+.d+英寸-d+.d+英寸).*’, str(s)) != []:return re.findall(f’.*?(d+.d+英寸-d+.d+英寸).*’, str(s))[0]df_jp[’computer_in’] = df_jp[’computer_detail’].map(convert_two)

8.6將評論數(shù)轉(zhuǎn)化為整形

def convert_three(s): if re.findall(f’(d+)萬+’, str(s)) != []:number = int(re.findall(f’(d+)萬+’, str(s))[0]) * 10000return number elif re.findall(f’(d+)+’, str(s)) != []:number = re.findall(f’(d+)+’, str(s))[0]return numberdf_jp[’computer_commit’] = df_jp[’computer_commit’].map(convert_three)

8.7篩選出需要分析的品牌

def find_computer(name, s): sr = re.findall(f’.*({name}).*’, str(s))[0] return srdef convert(s): if re.findall(f’.*(聯(lián)想).*’, str(s)) != []:return find_computer(’聯(lián)想’, s) elif re.findall(f’.*(惠普).*’, str(s)) != []:return find_computer(’惠普’, s) elif re.findall(f’.*(華為).*’, str(s)) != []:return find_computer(’華為’, s) elif re.findall(f’.*(戴爾).*’, str(s)) != []:return find_computer(’戴爾’, s) elif re.findall(f’.*(華碩).*’, str(s)) != []:return find_computer(’華碩’, s) elif re.findall(f’.*(小米).*’, str(s)) != []:return find_computer(’小米’, s) elif re.findall(f’.*(榮耀).*’, str(s)) != []:return find_computer(’榮耀’, s) elif re.findall(f’.*(神舟).*’, str(s)) != []:return find_computer(’神舟’, s) elif re.findall(f’.*(外星人).*’, str(s)) != []:return find_computer(’外星人’, s)df_jp[’computer_p_shop’] = df_jp[’computer_p_shop’].map(convert)

8.8刪除指定字段為空值的數(shù)據(jù)

for n in [’computer_price’, ’computer_commit’, ’computer_p_shop’, ’computer_sku’, ’computer_detail’, ’computer_intel’, ’computer_in’]: index_ls = df_jp[df_jp[[n]].isnull().any(axis=1)==True].index df_jp.drop(index=index_ls, inplace=True)

8.9查看各品牌的平均價格

plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp.groupby(by=’computer_p_shop’)[[’computer_price’]].mean().reset_index())for index,row in df_jp.groupby(by=’computer_p_shop’)[[’computer_price’]].mean().reset_index().iterrows(): ax.text(row.name,row[’computer_price’] + 2,round(row[’computer_price’],2),color='black',ha='center')ax.set_xlabel(’品牌’)ax.set_ylabel(’平均價格’)ax.set_title(’各品牌平均價格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’各品牌平均價格.png’, dpi=400)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

8.10 查看各品牌的價格區(qū)間

plt.figure(figsize=(10, 8), dpi=100)ax = sns.boxenplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp.query(’computer_price>500’))ax.set_xlabel(’品牌’)ax.set_ylabel(’價格區(qū)間’)ax.set_title(’各品牌價格區(qū)間’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’各品牌價格區(qū)間.png’, dpi=400)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

8.11 查看價格與評論數(shù)的關(guān)系

df_jp[’computer_commit’] = df_jp[’computer_commit’].astype(’int64’)ax = sns.jointplot(x='computer_commit', y='computer_price', data=df_jp, kind='reg', truncate=False,color='m', height=10)ax.fig.savefig(’評論數(shù)與價格的關(guān)系.png’)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

8.12 查看商品標題里出現(xiàn)的關(guān)鍵詞

import imageio# 將特征轉(zhuǎn)換為列表ls = df_jp[’computer_title’].to_list()# 替換非中英文的字符feature_points = [re.sub(r’[^a-zA-Zu4E00-u9FA5]+’,’ ’,str(feature)) for feature in ls]# 讀取停用詞stop_world = list(pd.read_csv(’./百度停用詞表.txt’, engine=’python’, encoding=’utf-8’, names=[’stopwords’])[’stopwords’])feature_points2 = []for feature in feature_points: # 遍歷每一條評論 words = jieba.lcut(feature) # 精確模式,沒有冗余.對每一條評論進行jieba分詞 ind1 = np.array([len(word) > 1 for word in words]) # 判斷每個分詞的長度是否大于1 ser1 = pd.Series(words) ser2 = ser1[ind1] # 篩選分詞長度大于1的分詞留下 ind2 = ~ser2.isin(stop_world) # 注意取反負號 ser3 = ser2[ind2].unique() # 篩選出不在停用詞表的分詞留下,并去重 if len(ser3) > 0:feature_points2.append(list(ser3))# 將所有分詞存儲到一個列表中wordlist = [word for feature in feature_points2 for word in feature]# 將列表中所有的分詞拼接成一個字符串feature_str = ’ ’.join(wordlist) # 標題分析font_path = r’./simhei.ttf’shoes_box_jpg = imageio.imread(’./home.jpg’)wc=wordcloud.WordCloud( background_color=’black’, mask=shoes_box_jpg, font_path = font_path, min_font_size=5, max_font_size=50, width=260, height=260,)wc.generate(feature_str)plt.figure(figsize=(10, 8), dpi=100)plt.imshow(wc)plt.axis(’off’)plt.savefig(’標題提取關(guān)鍵詞’)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

8.13 篩選價格在4000到5000,聯(lián)想品牌、處理器是i5、屏幕大小在15寸以上的數(shù)據(jù)并查看價格

df_jd_query = df_jp.loc[(df_jp[’computer_price’] <=5000) & (df_jp[’computer_price’]>=4000) & (df_jp[’computer_p_shop’]=='聯(lián)想') & (df_jp[’computer_intel’]=='i5') & (df_jp[’computer_in’]=='15.0英寸-15.9英寸'), :].copy()plt.figure(figsize=(20, 10), dpi=100)ax = sns.barplot(x=’computer_sku’, y=’computer_price’, data=df_jd_query)ax.set_xlabel(’聯(lián)想品牌SKU’)ax.set_ylabel(’價格’)ax.set_title(’酷睿i5處理器屏幕15寸以上各SKU的價格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’酷睿i5處理器屏幕15寸以上各SKU的價格.png’, dpi=400)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

8.14 篩選價格在4000到5000,戴爾品牌、處理器是i7、屏幕大小在15寸以上的數(shù)據(jù)并查看價格

df_jp_daier = df_jp.loc[(df_jp[’computer_price’] <=5000) & (df_jp[’computer_price’]>=4000) & (df_jp[’computer_p_shop’]=='戴爾') & (df_jp[’computer_intel’]=='i7') & (df_jp[’computer_in’]=='15.0英寸-15.9英寸'), :].copy()plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_sku’, y=’computer_price’, data=df_jp_daier)ax.set_xlabel(’戴爾品牌SKU’)ax.set_ylabel(’價格’)ax.set_title(’酷睿i7處理器屏幕15寸以上各SKU的價格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’酷睿i7處理器屏幕15寸以上各SKU的價格.png’, dpi=400)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

8.15 不同Intel處理器品牌的價格

plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp, hue=’computer_intel’)ax.set_xlabel(’品牌’)ax.set_ylabel(’價格’)ax.set_title(’不同酷睿處理器品牌的價格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’不同酷睿處理器品牌的價格.png’, dpi=400)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

8.16 不同尺寸品牌的價格

plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp, hue=’computer_in’)ax.set_xlabel(’品牌’)ax.set_ylabel(’價格’)ax.set_title(’不同尺寸品牌的價格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’不同尺寸品牌的價格.png’, dpi=400)

python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析

以上就是python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進行簡單處理和分析的詳細內(nèi)容,更多關(guān)于python 爬取京東數(shù)據(jù)的資料請關(guān)注好吧啦網(wǎng)其它相關(guān)文章!

標簽: 京東 Python
相關(guān)文章:
主站蜘蛛池模板: 国产v综合v亚洲欧美大另类 | 男的操美女 | 一级毛片一级毛片a毛片欧美 | 久草.com| 九九九九热精品免费视频 | 久久狠狠躁免费观看2020 | 18在线| 91欧美激情一区二区三区成人 | 日韩中文精品亚洲第三区 | 日韩欧国产精品一区综合无码 | 欧美日韩精品一区二区 | 伊人蜜桃 | 欧美高清性色生活 | 国产精品九九久久一区hh | 亚洲国产精品日韩高清秒播 | 求欧美精品网址 | 黄色美女网站在线观看 | 亚洲国产成人久久一区久久 | 亚洲欧美精选 | 美女一级免费毛片 | 欧美h版成版在线观看 | 夜间福利在线观看 | 久久精品一品道久久精品9 久久精品一区 | 国产成人一区二区三区精品久久 | 色青青草原桃花久久综合 | 欧美与黑人午夜性猛交久久久 | 国产成人午夜极速观看 | 免费看美女无遮掩的软件 | 一级无毛片 | 国产99久久亚洲综合精品 | 亚洲午夜精品一级在线 | 久久精品国产国产精品四凭 | 黄色三级视频网站 | 舔操| 午夜免费69性视频爽爽爽 | 91玖玖| 亚洲欧美精品成人久久91 | 18视频免费网址在线观看 | 免费看成人频视在线视频 | 黄页网址免费观看18网站 | 手机看福利片 |