Python 多進(jìn)程、多線程效率對比
Python 界有條不成文的準(zhǔn)則: 計(jì)算密集型任務(wù)適合多進(jìn)程,IO 密集型任務(wù)適合多線程。本篇來作個(gè)比較。
通常來說多線程相對于多進(jìn)程有優(yōu)勢,因?yàn)閯?chuàng)建一個(gè)進(jìn)程開銷比較大,然而因?yàn)樵?python 中有 GIL 這把大鎖的存在,導(dǎo)致執(zhí)行計(jì)算密集型任務(wù)時(shí)多線程實(shí)際只能是單線程。而且由于線程之間切換的開銷導(dǎo)致多線程往往比實(shí)際的單線程還要慢,所以在 python 中計(jì)算密集型任務(wù)通常使用多進(jìn)程,因?yàn)楦鱾€(gè)進(jìn)程有各自獨(dú)立的 GIL,互不干擾。
而在 IO 密集型任務(wù)中,CPU 時(shí)常處于等待狀態(tài),操作系統(tǒng)需要頻繁與外界環(huán)境進(jìn)行交互,如讀寫文件,在網(wǎng)絡(luò)間通信等。在這期間 GIL 會(huì)被釋放,因而就可以使用真正的多線程。
以上是理論,下面做一個(gè)簡單的模擬測試: 大量計(jì)算用 math.sin() + math.cos() 來代替,IO 密集型用 time.sleep() 來模擬。 在 Python 中有多種方式可以實(shí)現(xiàn)多進(jìn)程和多線程,這里一并納入看看是否有效率差異:
多進(jìn)程: joblib.multiprocessing, multiprocessing.Pool, multiprocessing.apply_async, concurrent.futures.ProcessPoolExecutor 多線程: joblib.threading, threading.Thread, concurrent.futures.ThreadPoolExecutorfrom multiprocessing import Poolfrom threading import Threadfrom concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutorimport time, os, mathfrom joblib import Parallel, delayed, parallel_backenddef f_IO(a): # IO 密集型 time.sleep(5)def f_compute(a): # 計(jì)算密集型 for _ in range(int(1e7)): math.sin(40) + math.cos(40) returndef normal(sub_f): for i in range(6): sub_f(i) returndef joblib_process(sub_f): with parallel_backend('multiprocessing', n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) returndef joblib_thread(sub_f): with parallel_backend(’threading’, n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) returndef mp(sub_f): with Pool(processes=6) as p: res = p.map(sub_f, list(range(6))) returndef asy(sub_f): with Pool(processes=6) as p: result = [] for j in range(6): a = p.apply_async(sub_f, args=(j,)) result.append(a) res = [j.get() for j in result]def thread(sub_f): threads = [] for j in range(6): t = Thread(target=sub_f, args=(j,)) threads.append(t) t.start() for t in threads: t.join()def thread_pool(sub_f): with ThreadPoolExecutor(max_workers=6) as executor: res = [executor.submit(sub_f, j) for j in range(6)]def process_pool(sub_f): with ProcessPoolExecutor(max_workers=6) as executor: res = executor.map(sub_f, list(range(6)))def showtime(f, sub_f, name): start_time = time.time() f(sub_f) print('{} time: {:.4f}s'.format(name, time.time() - start_time))def main(sub_f): showtime(normal, sub_f, 'normal') print() print('------ 多進(jìn)程 ------') showtime(joblib_process, sub_f, 'joblib multiprocess') showtime(mp, sub_f, 'pool') showtime(asy, sub_f, 'async') showtime(process_pool, sub_f, 'process_pool') print() print('----- 多線程 -----') showtime(joblib_thread, sub_f, 'joblib thread') showtime(thread, sub_f, 'thread') showtime(thread_pool, sub_f, 'thread_pool')if __name__ == '__main__': print('----- 計(jì)算密集型 -----') sub_f = f_compute main(sub_f) print() print('----- IO 密集型 -----') sub_f = f_IO main(sub_f)
結(jié)果:
----- 計(jì)算密集型 -----normal time: 15.1212s------ 多進(jìn)程 ------joblib multiprocess time: 8.2421spool time: 8.5439sasync time: 8.3229sprocess_pool time: 8.1722s----- 多線程 -----joblib thread time: 21.5191sthread time: 21.3865sthread_pool time: 22.5104s----- IO 密集型 -----normal time: 30.0305s------ 多進(jìn)程 ------joblib multiprocess time: 5.0345spool time: 5.0188sasync time: 5.0256sprocess_pool time: 5.0263s----- 多線程 -----joblib thread time: 5.0142sthread time: 5.0055sthread_pool time: 5.0064s
上面每一方法都統(tǒng)一創(chuàng)建6個(gè)進(jìn)程/線程,結(jié)果是計(jì)算密集型任務(wù)中速度:多進(jìn)程 > 單進(jìn)程/線程 > 多線程, IO 密集型任務(wù)速度: 多線程 > 多進(jìn)程 > 單進(jìn)程/線程。
以上就是Python 多進(jìn)程、多線程效率比較的詳細(xì)內(nèi)容,更多關(guān)于Python 多進(jìn)程、多線程的資料請關(guān)注好吧啦網(wǎng)其它相關(guān)文章!
相關(guān)文章:
1. ASP常用日期格式化函數(shù) FormatDate()2. ASP新手必備的基礎(chǔ)知識3. CSS 使用Sprites技術(shù)實(shí)現(xiàn)圓角效果4. chat.asp聊天程序的編寫方法5. 詳解瀏覽器的緩存機(jī)制6. ASP中if語句、select 、while循環(huán)的使用方法7. 怎樣才能用js生成xmldom對象,并且在firefox中也實(shí)現(xiàn)xml數(shù)據(jù)島?8. HTML中的XML數(shù)據(jù)島記錄編輯與添加9. SXNA RSS Blog 聚合器程序10. 推薦一個(gè)好看Table表格的css樣式代碼詳解
