色综合图-色综合图片-色综合图片二区150p-色综合图区-玖玖国产精品视频-玖玖香蕉视频

您的位置:首頁技術文章
文章詳情頁

Python深度學習之使用Pytorch搭建ShuffleNetv2

瀏覽:3日期:2022-06-20 14:57:37
一、model.py1.1 Channel Shuffle

Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2

def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width] x = x.view(batch_size, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batch_size, -1, height, width) return x1.2 block

Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2

class InvertedResidual(nn.Module): def __init__(self, input_c: int, output_c: int, stride: int):super(InvertedResidual, self).__init__()if stride not in [1, 2]: raise ValueError('illegal stride value.')self.stride = strideassert output_c % 2 == 0branch_features = output_c // 2# 當stride為1時,input_channel應該是branch_features的兩倍# python中 ’<<’ 是位運算,可理解為計算×2的快速方法assert (self.stride != 1) or (input_c == branch_features << 1)if self.stride == 2: self.branch1 = nn.Sequential(self.depthwise_conv(input_c, input_c, kernel_s=3, stride=self.stride, padding=1),nn.BatchNorm2d(input_c),nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True) )else: self.branch1 = nn.Sequential()self.branch2 = nn.Sequential( nn.Conv2d(input_c if self.stride > 1 else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True)) @staticmethod def depthwise_conv(input_c: int, output_c: int, kernel_s: int, stride: int = 1, padding: int = 0, bias: bool = False) -> nn.Conv2d:return nn.Conv2d(in_channels=input_c, out_channels=output_c, kernel_size=kernel_s, stride=stride, padding=padding, bias=bias, groups=input_c) def forward(self, x: Tensor) -> Tensor:if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1)else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)out = channel_shuffle(out, 2)return out1.3 shufflenet v2

Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2Python深度學習之使用Pytorch搭建ShuffleNetv2

class ShuffleNetV2(nn.Module): def __init__(self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual):super(ShuffleNetV2, self).__init__()if len(stages_repeats) != 3: raise ValueError('expected stages_repeats as list of 3 positive ints')if len(stages_out_channels) != 5: raise ValueError('expected stages_out_channels as list of 5 positive ints')self._stage_out_channels = stages_out_channels# input RGB imageinput_channels = 3output_channels = self._stage_out_channels[0]self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True))input_channels = output_channelsself.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# Static annotations for mypyself.stage2: nn.Sequentialself.stage3: nn.Sequentialself.stage4: nn.Sequentialstage_names = ['stage{}'.format(i) for i in [2, 3, 4]]for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1):seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channelsoutput_channels = self._stage_out_channels[-1]self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True))self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor:# See note [TorchScript super()]x = self.conv1(x)x = self.maxpool(x)x = self.stage2(x)x = self.stage3(x)x = self.stage4(x)x = self.conv5(x)x = x.mean([2, 3]) # global poolx = self.fc(x)return x def forward(self, x: Tensor) -> Tensor:return self._forward_impl(x)二、train.py

Python深度學習之使用Pytorch搭建ShuffleNetv2

到此這篇關于Python深度學習之使用Pytorch搭建ShuffleNetv2的文章就介紹到這了,更多相關Python用Pytorch搭建ShuffleNetv2內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 99r精品视频 | 欧美一级做 | 日本午色www高清视频 | 在线日本看片免费人成视久网 | 一级看片 | 欧美黑人巨大xxxxxxxx | 99久久九九| 模特三级在线观看 | 狠狠狠狠狠 | 久久国产精品视频 | 九九九九在线精品免费视频 | 久久亚洲国产精品五月天 | 免费高清不卡毛片在线看 | 精品国产一区二区三区久 | 亚洲国产欧美日韩第一香蕉 | 国产激情视频网站 | 久久国产亚洲观看 | 国内精品视频成人一区二区 | 国产成人亚洲综合无 | 爽爽窝窝午夜精品一区二区 | 三级网站视频 | 久久免费观看国产精品 | 天天草综合 | 亚洲免费在线 | 国产亚洲精品久久久久久 | 美国黑人特大一级毛片 | 91久久国产露脸精品免费 | 久久久久久久久久久观看 | 亚洲国产一级毛片 | 午夜精品视频在线观看美女 | 9久久99久久久精品齐齐综合色圆 | v欧美精品v日本精品 | 国产永久免费视频m3u8 | 岛国伊人| 我看毛片 | 成人在线观看一区 | 亚洲欧美日韩国产精品一区 | 国产精品理论片在线观看 | 久久国产网站 | 韩国视频一区 | 日韩欧美亚洲每的更新在线 |